Length scales of turbulence in stably stratified mixing layers

William D. Smyth and James N. Moun
College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331-5503
(Received 19 January 1999; accepted 18 February 2000)

Turbulence resulting from Kelvin–Helmholtz instability in layers of localized stratification and shear is studied by means of direct numerical simulation. Our objective is to present a comprehensive description of the turbulence evolution in terms of simple, conceptual pictures of shear–buoyancy interaction that have been developed previously based on assumptions of spatially uniform stratification and shear. To this end, we examine the evolution of various length scales that are commonly used to characterize the physical state of a turbulent flow. Evolving layer thicknesses and overturning scales are described, as are the Ozmidov, Corrsin, and Kolmogorov scales. These considerations enable us to provide an enhanced understanding of the relationships between uniform-gradient and localized-gradient models for sheared, stratified turbulence. We show that the ratio of the Ozmidov scale to the Thorpe scale provides a useful indicator of the age of a turbulent event resulting from Kelvin–Helmholtz instability. © 2000 American Institute of Physics.

I. INTRODUCTION

The development of small-scale geophysical turbulence is governed largely by a competition between the vertical shear of the background flow and buoyancy forces due to ambient density stratification. Shear supplies kinetic energy for turbulent motions, while buoyancy effects (in stable stratification) act to reduce turbulence. The influences of these two factors have been investigated, both separately and together, in theoretical, experimental, observational, and numerical studies over the past several decades.1–4

Turbulence evolution in a stratified shear flow is determined not only by the strengths of the background shear and stratification, but also by the vertical distributions of those quantities. Two particular special cases have been employed extensively. The first is in most respects the simplest, while the second provides a more realistic model for geophysical flows. The simpler scenario is the one in which both background horizontal velocity and density vary linearly in the vertical coordinate, so that shear and stratification are uniform. Much of what we know about sheared, stratified turbulence is derived from the study of this idealized flow. A second important special case is the stratified shear layer, in which both shear and stratification are confined to a finite, horizontal layer. This localization of the shear leads to the possibility of inflectional instability, through which normal mode disturbances grow exponentially. In stably stratified conditions, this mechanism is called Kelvin–Helmholtz (KH) instability, and is thought to be an important source of turbulence in geophysical flows.5–7

The main goal of the present study is to clarify the relationship between the two special cases described above. Specifically, we will describe the evolution of turbulence resulting from KH instability in the context of a very useful conceptual picture derived mainly from the study of uniform shear and stratification. Since that conceptual picture is most readily understood in terms of the various length scales that characterize turbulence, our focus will be on issues of length scale evolution. We now describe this scenario, paraphrasing ideas developed mainly in the laboratory studies of Van Atta and co-workers,8–13 in the analyses of Gibson,14–17 and in the related work of Ivey and Imberger.18,19 The central results may be derived through the use of simplified model equations for the turbulent kinetic energy.10,20,21

We begin by imagining a background flow characterized by uniform stratification and zero shear [Fig. 1(a)]. Suppose that, within this flow, a horizontal layer of thickness h is subjected to vigorous stirring, after which the resulting turbulence is allowed to decay. Buoyancy effects act preferentially on the larger scales of motion; an estimate of the smallest scale influenced by buoyancy is provided by the Ozmidov scale, \(L_\text{O} = \sqrt{\varepsilon N^3} \) (in which \(\varepsilon \) is the turbulent kinetic energy dissipation rate and \(N \) the ambient buoyancy frequency). If the initial stirring is sufficiently energetic, \(L_\text{O} \) will initially be larger than the largest scale of turbulent motion (i.e., the layer depth), so that buoyancy will have negligible effect on the dynamics. As the flow evolves, however, both the largest and the smallest scales of the turbulence will increase in size, while the Ozmidov scale will decrease. Buoyancy will therefore become important eventually, deforming the largest scales of the turbulence first, the smaller scales later. Ultimately, all scales of the turbulence will be actively inhibited by buoyancy.

The evolution of an impulsively generated turbulent layer in a stratified environment can therefore be divided into three intervals: at first, the turbulence is unaffected by buoyancy; later, the large scales are affected but the smaller scales are not; finally, turbulence is suppressed by buoyancy on all scales. Gibson14 referred to the first transition as the ‘‘onset
Our subject in the present paper is the alternative case in which background shear and stratification are not spatially uniform, but rather are localized in a finite layer. Turbulence generation via KH instability of a stratified mixing layer differs from the above-described uniform-gradient case in that shear and stratification are confined to a finite layer which expands in time, so that both S and N decrease. Moreover, S decreases more rapidly than N, with the result that any initial stratification, however weak, will eventually prevail over the shear and damp the turbulence. Thus, localized shear and stratification interact in ways that are fundamentally different from the interaction of uniform shear and stratification. If the initial bulk Richardson number Ri_0 exceeds its critical value (which is once again in the vicinity of $1/4$), turbulence decays, as in the uniform case. In this paper, we will show that if Ri_0 is small, the evolution resembles the above-described pure shear case [Fig. 1(b)] at early times, the pure stratification case [Fig. 1(a)] at later times.

The onset of buoyancy control is not a useful concept for the KH case because, as we will see, the largest scales of the turbulence are affected by buoyancy right from the outset. This is not surprising, since the large eddies are Kelvin–Helmholtz billows, whose growth rate is controlled by the initial bulk Richardson number. Our purpose here will be to describe the encroachment of buoyancy effects on successively smaller length scales until turbulence is ultimately damped. The second transition described earlier, the BIV transition, is therefore relevant.

We begin in Sec. II with a description of the mathematical model and the numerical techniques employed to obtain solutions. In Sec. III, we discuss the evolutionary patterns of various length scales associated with the turbulent mixing layers. We begin by investigating the growth of the turbulent layer and compare the results with previous laboratory experiments. A result of central importance is that, as in laboratory flows, the bulk Richardson number evolves toward a quasuniversal value somewhat in excess of $1/4$. We then describe various measures of parcel displacements and the relationships among them. The length scales above which shear and stratification are active are also discussed, along with the Kolmogorov scale. Comparisons among these various length scales allow us to understand the evolution of a stratified shear layer in terms of the conceptual pictures based on the above-described uniform shear and stratification. In Sec. IV, we compare several nondimensional numbers that describe aspects of the evolutionary state of a turbulent flow. A summary and closing discussion is given in Sec. V.

II. METHODOLOGY

In this section, we describe the mathematical model that we use to represent turbulence in a sheared, stratified environment. We then discuss the numerical methods employed to solve the equations, and the initial conditions for the sequence of simulations whose results are described in the remainder of the paper.
A. The mathematical model

Our mathematical model employs the Boussinesq equations for velocity, density, and pressure in a nonrotating physical space measured by the Cartesian coordinates x, y, and z:

$$\frac{\partial \mathbf{u}}{\partial t} = \mathbf{u} \times (\nabla \times \mathbf{u}) - \nabla \Pi + g \hat{z} \hat{\theta} + \nu \nabla^2 \mathbf{u},$$ \hspace{1cm} (1)

$$\Pi = \frac{p}{\rho_0} + K.$$ \hspace{1cm} (2)

Here, p is the pressure, \(\rho_0\) is a constant density scale, and \(K = \frac{1}{2} \mathbf{u} \cdot \mathbf{u}\) is the specific kinetic energy. The thermodynamic variable \(\theta\) represents the fractional specific volume deviation, or minus the fractional density deviation, i.e., \(\theta = -(\rho - \rho_0)/\rho_0\), in which \(\rho_0\) is a constant mean density. In a fluid where density is controlled only by temperature, \(\theta\) is proportional to the temperature deviation (with proportionality constant equal to the thermal expansion coefficient). The vertical unit vector is represented by \(\hat{z}\). The gravitational acceleration \(g\) has the value 9.8 m/s\(^2\). Viscous effects are represented by the usual Laplacian operator, with kinematic viscosity \(\nu\) combined with the fluid parameters \(\rho_0\) and \(\kappa\) and the geophysical parameter \(g\) to form three dimensionless groups whose values determine the stability of the flow at \(t=0\):

$$Re_0 = \frac{u_0 h_0}{\nu}, \quad Ri_0 = \frac{g \theta_0 h_0}{u_0^2}, \quad Pr = \frac{\nu}{\kappa}.$$ \hspace{1cm} (11)

The initial macroscale Reynolds number, \(Re_0\), expresses the relative importance of viscous effects. In the present simulations, \(Re_0\) is of order a few thousand, large enough that the initial instability is nearly inviscid. The bulk Richardson number, \(Ri_0\), quantifies the relative importance of shear and stratification. If \(Ri_0 < 1/4\), the initial mean flow possesses unstable normal modes.\(^{36}\) The Prandtl number, Pr, is the ratio of the diffusivities of momentum and density.

In order to obtain a fully turbulent flow efficiently, we add to the initial mean profiles a perturbation field designed to approximate the structure of the most-unstable primary and secondary instabilities. The horizontal velocity perturbation is given by

$$\vec{u}(x,z) = u_0 \left(\frac{1}{2k_0} - \cos \left(\frac{2k_0 x}{h_0} \right) \right) \tan \left(\frac{2z}{h_0} \right) \sec \left(\frac{2z}{h_0} \right),$$ \hspace{1cm} (12)

where \(k_0\) is the streamwise wave number of the fastest-growing eigenmode of the parallel flow. (While this perturbation projects onto both the primary and pairing instabilities, the phase relationship between the two modes is not chosen to optimize pairing. The flow must adjust itself to achieve the correct phase relationship before pairing can occur.\(^{41,56,57}\))

In order to excite three-dimensional secondary instabilities, the spanwise velocity is given a quasirandom perturbation,

$$\vec{v}(x,y,z) = \frac{u_0}{2} r_v (x,y,z) \sec \left(\frac{z}{h_0} \right),$$ \hspace{1cm} (13)
where \(r(x,y,z) \) is a random function varying between \(-1\) and \(1\), designed so that \(\tilde{v} \) will have zero mean and zero vertical integral. Because of the latter condition, it is possible to obtain \(\hat{w}(x,y,z) \), the perturbation vertical velocity field corresponding to (12) and (13), simply by integrating (3) in the vertical. Finally, a random perturbation is applied to the scalar field, viz.

\[
\hat{\theta}(x,y,z) = \frac{\theta_0}{2} r(x,y,z) \text{sech}^2 \frac{2z}{h_0},
\]

(14)

where \(r \) is a random function with zero mean, varying between \(-1\) and \(1\).

The initial condition is now defined by

\[
\theta = \tilde{\theta}(z) + a \hat{\theta}(x,y,z), \quad u = \tilde{u}(z) + a \hat{u}(x,y,z), \quad v = a \hat{v}(x,y,z), \quad w = a \hat{w}(x,y,z),
\]

(15)

where \(a \) is a constant controlling the amplitude of the initial perturbation.

C. Numerical methods

Because the horizontal boundary conditions are periodic, discretization of the horizontal differential operators is accomplished efficiently in Fourier space using fast Fourier transforms. In the vertical direction, spatial discretization is done using second-order, centered finite differences, in order to retain flexibility in the choice of upper and lower boundary conditions. The largest-scale runs described here employ array sizes of \(512 \times 64 \times 256 \), which requires about 800 Mbytes of main memory on a 32-node CM5 partition. Although the geometry of the computational grid inevitably excludes some modes that would be present at both large and small scales, it is designed to accommodate those modes which contribute most to the dynamics of the turbulence, allowing us to simulate flows with the highest possible Reynolds number for a given memory capacity.

It is now generally recognized that a reliable direct numerical simulation (DNS) code must have grid spacing no greater than a few (3–6) times the Kolmogorov length scale \(L_K = (\nu/\epsilon)^{1/4} \) in which \(\epsilon \) is the volume-averaged kinetic energy dissipation rate. For flows with \(Pr > 1 \), the Kolmogorov scale is replaced by the Batchelor scale: \(L_B = L_K / Pr^{1/2} \). In order to take advantage of this information, one must be able to estimate the maximum value of \(\epsilon \) in advance. We do this by employing the scaling \(\epsilon^+ = cu_\theta h_0 / \nu \). Through trial and error, we have established the value 6.5 \times 10^{-4} for the proportionality constant \(c \). The grid spacing is then set to \(2.5L_B \), where \(L_B \) is the estimated minimum Batchelor scale \((\nu / \epsilon^+)^{1/4} Pr^{-1/2} \). The present version of the model uses isotropic grid resolution, i.e., \(\Delta x = \Delta y = \Delta z \). These choices are validated in Sec. II E, using a stringent spectral test of grid resolution.

The fields are stepped forward in time using a second-order Adams–Bashforth method. Implicit time stepping of the viscous operators has turned out to be unnecessary, as the time step is limited by the advective terms. For accuracy and numerical stability, we limit the time step in accordance with

\[
\Delta t < 0.12 \min \left(\frac{\Delta x_i}{U_x^+} \right),
\]

(16)
in which \(U_x^+ \) is the maximum speed in the \(x_i \) coordinate direction. At each time step, the augmented pressure field is obtained as the solution of a Helmholtz equation which is designed to force the flow to be nondivergent at the next time step. To control aliasing effects, the upper 16% of wave numbers in each spatial dimension are filtered out of the velocity fields every 1–50 time steps, depending on the amount of energy present in those modes. This filtering also serves to remove contamination by small-scale pressure modes which arise due to our choice of vertical discretization. The energy removed by filtering is monitored to ensure that it remains small (rarely more than a few percent, never more than 20%) compared with the energy removed by the molecular viscosity term. (This adaptive de-aliasing scheme is useful because of the nonstationary nature of the turbulence. The most intense turbulence, and therefore the smallest Kolmogorov scale, occurs during a relatively brief phase of each simulation. Because the grid resolution is chosen to be adequate for that phase, it is much more than adequate during the remainder of each run, i.e., the energy levels in the smallest resolved scales are often negligible. Because de-aliasing requires significant processing time, we economize by de-aliasing only to the degree that the procedure is required.) In the present application, selected scalar quantities are saved at every time step, while the full three-dimensional fields are saved at intervals of 10\(h_0/\nu \).

D. Parameter values

The model equations can be nondimensionalized using \(u_\theta \), \(h_0 \), and \(\theta_0 \) as scales for velocity, length, and fractional density fluctuation. The resulting nondimensional equation are completely specified by the parameter set \((Pr, Ri_0, Re_0) \), and the dataset used here is designed to explicate effects of variations in the values of these three parameters. Before discussing them further, however, we will first describe our choices for several secondary parameters that appear in the boundary and initial conditions.

The boundary conditions, once nondimensionalized, introduce three additional parameters: \(L_z/h_0 \), \(L_z/h_0 \), and \(L_z/h_0 \). By taking advantage of the known geometry of the outer scales of turbulent KH billows, we are able to choose these parameters for maximally efficient use of memory while minimizing boundary effects. These choices are based on results from linear stability analyses of the parallel flow,37,59 two-dimensional nonlinear simulations with various domain sizes,56 and secondary stability analyses of large-amplitude, two-dimensional KH waves.38,39,41,55 For all runs, we choose \(L_z/h_0 = 4 \pi / k_{h0} = 14.0 \), in order to allow for a single pairing of the primary KH wave train. This imposes no significant restriction on the flow evolution as long as \(Ri_0 \) is not too small; accordingly, we keep \(Ri_0 = 0.08 \). The vertical domain size \(L_z/h_0 \) is set to 6.95 for all cases. This choice is based on extensive sensitivity tests, some of which are reported in a separate publication.56 The spanwise domain size is given one of two values: \(L_z/h_0 = 3.50 \) or 1.75, which...
allow for either four or two (approximate) wavelengths of the dominant secondary instability.\(^{41}\) We believe that two wavelengths is sufficient; four wavelengths were employed in selected runs as a check on this assumption.

The flow evolution is also affected by the initial conditions. Once nondimensionalized by \(u_0\), \(h_0\), and \(\theta_0\), these are specified by the wave number \(k_0\), the amplitude parameters \(a\) and \(b\), and by the form of the random noise fields \(r_e\) and \(r_g\). We ignore the slight dependence of \(k_0\) on the Richardson number\(^{37}\) and use \(k_0 = 0.90/h_0\) for all simulations. The amplitude parameter \(a\) appearing in (15) is given the value 0.05, which ensures that the simulation approximates the growth of infinitesimal perturbations. The parameter \(b\), from (12), is given the value 0.4177. This choice dictates that the subharmonic mode will be initialized with one-half the kinetic energy of the primary. Auxiliary runs were conducted to assess the influence of the random noise fields. Although the detailed evolution of the flow is highly sensitive to the initial conditions, the statistical quantities that are of primary concern to us are not.

E. Overview of turbulence evolution

In this paper, we describe results from a sequence of eight simulations designed to explicate the effects of \(Ri_0\), \(Re_0\), and \(Pr\), with the above-mentioned choices for the remaining parameters. Parameter values for these simulations are summarized in Table I. In each simulation, the flow evolution is qualitatively similar to that shown in Fig. 2. The initial growth and pairing of the primary KH vortices [Fig. 2(a)] is followed by a breaking phase, in which turbulence is created via three-dimensional secondary instabilities [Figs. 2(b) and 2(c)]. A detailed description of this process has been given recently by Cortesi \textit{et al.}\(^{51}\) Finally, there ensues an extended period in which turbulence gradually becomes anisotropic and ultimately decays. The flow thus relaxes toward a dynamically stable, parallel configuration perturbed by laminar gravity waves [Fig. 2(d)].

Next, we examine spectra of kinetic energy [Fig. 3(a)] and scalar variance [Fig. 3(b)] taken from the most-turbulent phase of simulation R04P7. At this point in this high-Prandtl number (\(Pr = 7\)) simulation, the DNS solution is expected to represent a useful model of turbulence in thermally stratified water. This flow state also represents a severe test of model resolution. Spectra are computed over the central region \(0 < y < L_y, 0 < z < L_z\), then averaged. Turbulence is very nearly homogeneous in this region; nevertheless, Kolmogorov and Batchelor scalings are applied separately to spectra computed at each \((y, z)\) prior to averaging. Spectra are terminated at a wave number equal to 0.84 times the Nyquist limit, beyond which the de-aliasing filter is active. In addition to the computed kinetic energy spectrum, Fig. 3(a) includes two standard spectral forms against which measured energy spectra are often compared.\(^{5} \) The solid curve represents the Nasmyth spectrum,\(^{60} \) which was derived from measurements made in a tidal channel. The dashed curve is the theoretical spectrum derived by Panchev and Kesich.\(^{61} \) In the dissipation range \((0.1 < kL_k < 1)\), the three curves agree closely. At the smallest resolved scales, spectrum rolls off at a rate intermediate between the Nasmyth and Panchev–Kesich forms. Note that this flow realization exhibits a complete dissipation subrange, but only the beginning of an inertial range. This compromise is necessary in order to achieve the high Prandtl number characteristic of thermally stratified water. Simulations with \(Pr = 1\) exhibit up to a decade of inertial range.\(^{62,63} \)

The scalar variance spectrum [Fig. 3(b)] is also compared with two standard forms. The dashed curve represents the Batchelor spectrum.\(^{64} \) The solid curve shows a more

<table>
<thead>
<tr>
<th>Symbol</th>
<th>○</th>
<th>○</th>
<th>▽</th>
<th>△</th>
<th>○</th>
<th>◊</th>
<th>○</th>
<th>●</th>
</tr>
</thead>
<tbody>
<tr>
<td>Run</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R06P1</td>
<td>256</td>
<td>512</td>
<td>256</td>
<td>512</td>
<td>256</td>
<td>512</td>
<td>512</td>
<td>512</td>
</tr>
<tr>
<td>R16P1</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>R04P1</td>
<td>128</td>
<td>256</td>
<td>128</td>
<td>256</td>
<td>128</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>R10P1</td>
<td>3.29</td>
<td>5.24</td>
<td>3.29</td>
<td>5.24</td>
<td>3.29</td>
<td>3.29</td>
<td>3.29</td>
<td>2.73</td>
</tr>
<tr>
<td>R03P4</td>
<td>1.63</td>
<td>2.62</td>
<td>1.63</td>
<td>2.60</td>
<td>1.63</td>
<td>1.63</td>
<td>1.63</td>
<td>1.36</td>
</tr>
<tr>
<td>R04P7</td>
<td>0.82</td>
<td>0.65</td>
<td>0.82</td>
<td>0.66</td>
<td>0.82</td>
<td>0.41</td>
<td>0.41</td>
<td>0.34</td>
</tr>
<tr>
<td>L_y (m)</td>
<td>1.03</td>
<td>1.29</td>
<td>1.02</td>
<td>1.29</td>
<td>1.04</td>
<td>1.29</td>
<td>1.04</td>
<td>1.29</td>
</tr>
<tr>
<td>L_z (m)</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
<td>0.24</td>
</tr>
<tr>
<td>(\Delta x (10^{-2} \text{ m}))</td>
<td>8.34</td>
<td>13.27</td>
<td>8.34</td>
<td>13.27</td>
<td>8.34</td>
<td>8.34</td>
<td>8.34</td>
<td>8.34</td>
</tr>
<tr>
<td>(\theta_0 (10^{-5} \text{ m/s}))</td>
<td>3.83</td>
<td>3.61</td>
<td>3.75</td>
<td>4.81</td>
<td>3.70</td>
<td>2.41</td>
<td>2.00</td>
<td>2.00</td>
</tr>
<tr>
<td>(\theta_0 (10^{-8} \text{ K}))</td>
<td>0.74</td>
<td>0.49</td>
<td>0.78</td>
<td>0.37</td>
<td>0.48</td>
<td>0.74</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>Pr</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Ri_0</td>
<td>0.08</td>
<td>0.08</td>
<td>0.12</td>
<td>0.12</td>
<td>0.16</td>
<td>0.12</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>Re_0</td>
<td>6140</td>
<td>15557</td>
<td>4098</td>
<td>10371</td>
<td>3074</td>
<td>4119</td>
<td>6147</td>
<td>4232</td>
</tr>
</tbody>
</table>

| TABLE I. Parameter values describing a sequence of eight simulations of breaking Kelvin–Helmholtz billows. \(N_x\), \(N_y\), and \(N_z\) are the array dimensions, \(L_x\), \(L_y\), and \(L_z\) are the domain dimensions, and \(\Delta x (= \Delta y = \Delta z)\) is the grid interval. Initial conditions are characterized by the length scale \(\ell_0\), the velocity scale \(u_0\), and the temperature scale \(\theta_0\). \(L_u = u_0/\rho g \theta_0\) is an estimated lower bound on the final layer depth based on the assumption that the bulk Richardson number asymptotes to 1/4; \(Pr\) is the Prandtl number; \(Re_0\) and \(Re_0\) are the initial bulk Richardson and Reynolds numbers, respectively. \(Re_0 = Re_0/2Re_0\) is a lower bound on the final value of the Reynolds number based on the assumption that the bulk Richardson number asymptotes to 1/4. Simulations are labeled as RxxPy, where ‘‘xx’’ represents \(Re_0/1000\) and ‘‘y’’ represents \(Pr\). |
complete theoretical form derived by Kraichnan on the basis of the Lagrangian history direct interaction approximation (LHDIA). The DNS spectrum strongly favors the LHDIA form. A detailed discussion of the physics of the scalar spectrum is given in a separate publication. The design criteria described in Sec. II C turned out to be conservative in this case: grid resolution extends well beyond the Batchelor scale. In each spectrum, the absence of increased energy at small scales indicates that the grid resolution has been chosen appropriately. We conclude that the model resolution is more than adequate for the present purposes.

We close this overview with a qualitative comparison of our simulated turbulent layers with the events they were originally designed to model: turbulent patches in the ocean thermocline. These comparisons will allow us to define and demonstrate the diagnostic techniques to be used later in the paper, and also to further illustrate the compromises that must be made in conducting direct simulations of turbulence in thermally stratified water. In Fig. 4(a), the solid curve in the left panel shows a segment of a high-resolution vertical temperature profile obtained 1000 km off the northern California coast in the spring of 1991. To understand the nature of the observed turbulence, we need a description of the "background" environment in which the turbulence is evolving, not an easy thing to define when the data consist of a single profile. Following Thorpe, we sort the raw temperature values into monotonically increasing order, as shown by the dashed curve. The result is an approximation to the profile that would be measured if the turbulence were allowed to relax adiabatically to a motionless state. The middle frame shows the Thorpe displacement $d_T(z)$, the excursion of the fluid parcel at z from the depth it occupies in the monotonically increasing configuration. The shape of this profile suggests the presence of an overturn spanning the entire turbulent layer. The rightmost panel shows the perturbation temperature, defined as the deviation from the monotonic profile.

Figures 4(b) and 4(c) show sample temperature and displacement profiles extracted from our DNS solutions. Each was selected at a stage in the simulation when the large-scale geometry resembled that shown in Fig. 4(a), i.e., a turbulent layer dominated by a single large overturn. The main parameters that vary between Figs. 4(b) and 4(c) are the Reynolds and Prandtl numbers. In Fig. 4(b), the overall shape of the DNS profile resembles the observed profile, and both the spatial scale and the magnitude of the temperature fluctua-

![Fig. 2.](image-url)
tions compare favorably. However, the observed profile exhibits considerably more small-scale structure than does the modeled profile. This is a Prandtl number effect: The Prandtl number of seawater is near 7, while the value used in the simulation shown in Fig. 4(b) is 1. In Fig. 4(c), we show similar diagnostics taken from a simulation with increased Prandtl number (Pr = 4, in this case). Here, the degree of small-scale structure is more consistent with the observation, the cost being a reduction in thickness (and thus Reynolds number) of the turbulent layer. For this study, we have conducted eight simulations using a range of Reynolds and Prandtl numbers (Table I). With Pr = 7, we are able to achieve Reynolds numbers characteristic of the smallest turbulent patches that have been observed in the ocean thermocline. By reducing Pr to unity, we achieve much higher Reynolds numbers, but sacrifice temperature variance in the smallest scales.

We note in passing that Fig. 4 illustrates the main limitations of both observational and numerical approaches to the study of geophysical turbulence. Observational data give only a glimpse of any given turbulent event, and must therefore be supplemented by means of strong assumptions. In contrast, numerical models furnish comprehensive data, but have difficulty reaching the parameter range characteristic of the geophysical flows they are intended to represent.

In summary, our simulated stratified shear layers undergo a realistic transition process leading to a state that exhibits many characteristics in common with both theoretical models of fully developed turbulence and observations of turbulence in geophysical flows. As turbulence decays, the simulated layers evolve toward a stable, parallel configuration. In what follows, we examine the evolution of various turbulence length scales that allow us to characterize the flow physics at each stage of its evolution.

III. EVOLUTION OF TURBULENT LENGTH SCALES

Our goal in this section is to describe length scale evolution in a localized gradient model in terms of the conceptual pictures that have proven useful in the understanding of uniform gradient models. In Sec. III A, we describe the spreading of the sheared and stratified layers. We find that the bulk Richardson number evolves in a common manner over a wide range of parameter values, echoing results from the classic laboratory experiments of Thorpe and Koop and Browand. This finding is useful in three ways. First, it provides an additional measure of confidence in the realism of our model solutions. Second, it suggests a scaling for the turbulence length scales to be discussed later. Finally, the evolution of the bulk Richardson number will prove to be the crucial element that distinguishes turbulence in localized gradients from that found in uniform gradient models.

In Sec. III B we examine three length scales designed to quantify parcel displacements associated with the energy-bearing eddies. These include variations of the parcel-
reordering approach introduced by Thorpe. In Sec. III C, we discuss the Ozmidov and Corrsin scales, which represent the smallest length scales at which the distorting influences of background stratification and shear (respectively) are felt. Using these results in combination with the eddy sizes computed in Sec. III B, we assess the degree to which the energy-containing eddies are influenced by background gradients at different stages in flow evolution. We then make a similar assessment with respect to the smaller-scale eddies in which viscous dissipation takes place.

The ultimate result of Sec. III is a summary of the evolution of turbulence resulting from the instability of a localized layer of nonzero shear and stratification (Sec. III D). The scenario is usefully understood as a combination of the limiting cases that occur in the uniform gradient model (cf. Fig. 1). The crux of the difference between the localized and uniform gradient models lies in the evolution of the bulk Richardson number.

A. Expansion of the sheared and stratified layers

In the present study, the initial thicknesses of the shear layer and the stratified layer were chosen to be equal. As the flow evolves, both of these thicknesses increase, and they do so at different rates. In addition, the shapes of the profiles evolve away from their initial hyperbolic tangent forms (9) and (10). The definition of the time-dependent depths of the shear and stratified layers is therefore somewhat arbitrary.

We look first at the evolutions of the integral scales, which are defined as follows using the profiles of horizontally averaged density $\bar{\theta}$ and velocity \bar{u}:

$$I_u = \int_{L/2}^{L} \left[1 - \left(\frac{\bar{u}}{u_0} \right)^2 \right] dz,$$

$$I_\theta = \int_{L/2}^{L} \left[1 - \left(\frac{\bar{\theta}}{\theta_0} \right)^2 \right] dz.$$ \hspace{1cm} (17)

These length scales are defined so that their initial values equal h_0 [up to the factor $\tanh(L_0/h_0)=1$]. In all eight simulations, I_θ and I_u grow from these original values to final values ranging from 0.45 to 1.55 m (Fig. 5). The final values vary by approximately a factor of 3 depending on the values of h_0, u_0, and θ_0.

In contrast, the bulk Richardson number formed from the integral scales,

$$R_i = \frac{g \theta_0 / I_\theta}{(u_0 / I_u)^2},$$ \hspace{1cm} (18)

exhibits relatively uniform behavior, increasing from R_i to a final value between 0.25 and 0.40 (Fig. 6). This result is consistent with observations of KH billows in the laboratory experiments of Thorpe31 and Koop and Browand32 In both of these studies, despite very different initial conditions and experimental techniques, final values of the bulk Richardson number were restricted to the range 0.32±0.06.

The uniformity of the bulk Richardson number evolution suggests that much of the dependence of the integral scales upon the initial conditions may be collapsed through the use of a suitably defined length scale. Here, we define

$$L_{sc} = \frac{u_0^2}{4g \theta_0}. \hspace{1cm} (19)$$

The factor of 4 is inserted so that, if $I_u = I_\theta = L_{sc}$, then $R_i = 1/4$. L_{sc} may therefore be thought of as an approximate lower bound on the thickness the turbulent layer will attain once entrainment via billow growth and pairing is complete.

As shown in Fig. 7, this scaling removes much of the dependence on initial conditions seen in Fig. 5, and a characteristic pattern of evolution is clearly visible. In all cases, the layer depths increase dramatically during the initial growth and merging of the KH billows. This initial phase is followed by a rapid collapse as the billows break. During this phase, potential energy stored in the billows is converted to kinetic energy via secondary instability.41,55 We then observe a second period of layer growth during which turbulence decays, followed by a prolonged period of slow spreading due to the action of molecular diffusion on the mean profiles. The shear layer and the stratified layer expand by similar amounts, though at different times: The initial billow growth expands the stratified layer preferentially, whereas in the turbulent phase following the collapse of the billows, the shear layer expands more rapidly. This pattern corresponds closely to that seen in laboratory experiments.52 Not surprisingly,
differences in the spreading of the stratified layer that are not collapsed by the above-described scaling are largely a function of the Prandtl number, with \(I_p/L_{\infty} \) increasing more in the \(Pr=1 \) cases than in the cases with \(Pr>1 \).

B. Parcel displacement scales

Our simulated flow fields invariably exhibit a sharp boundary between an inner, active region to which turbulence is confined, and an outer laminar region in which velocity and density are constant. In the analyses reported here, we prefer to compute certain statistics over the turbulent region only. The bulk thicknesses described in Sec. III A define layers which contain a considerable amount of nonturbulent fluid, and are therefore unsuitable for this purpose. Unfortunately, the turbulent region is difficult to define precisely. This problem is familiar in observational studies, where the definition of boundaries between which turbulence statistics should be calculated is always a challenge. Here, we have found it most useful to compute statistics over the region in which significant density changes occur. Specifically, we define the upper and lower boundaries of the region of interest to be the isotherms \(z_L(x,y,t) \) and \(z_U(x,y,t) \) such that
\[
\theta|_{z_L} = \alpha \theta_d/2 \quad \text{and} \quad \theta|_{z_U} = -\alpha \theta_d/2,
\]
where \(\alpha = \tanh(1) \). The inner region thus defined contains some wave motions as well as turbulence, and it may contain fluid which is stratified but not turbulent, but it has the virtue of containing all turbulent motions while being straightforward to identify. This inner region is denoted \(V_* \).

We will also need to specify values for the buoyancy frequency \(N(t) \) and the shear \(S(t) \) that characterize the turbulent layer as a whole. One choice would be values based on the above-described integral scales, namely \(S(t) = u_0/L_{\infty}(t) \) and \(N(t) = g \theta_0/I_p(t) \). However, these estimates are biased toward the maximum gradients found in the mean profiles. For example, if \(\bar{u}(z) \) is a hyperbolic tangent function, \(u_0/L_{\infty} \) is the maximum shear. If \(\bar{u}(z) \) represents uniform shear over a finite layer of depth \(L_u \), \(u_0/L_{\infty} \) overestimates that shear by 30%. We seek here are estimates based on the average gradients in the turbulent region \(V_* \). Accordingly, we define the bulk gradients to be the average gradients of the mean profiles in layers defined analogously with \(V_* \), viz.

\[
S(t) = \frac{\alpha u_0}{h_\theta(t)}, \quad \theta_0(t) = \frac{\alpha \theta_0}{h_\theta(t)}.
\]

where \(h_\theta \) is the distance between the isotherms \(\bar{u} = \pm a u_0/2 \) of the mean velocity and \(h_\theta \) is the distance between the isotherms \(\bar{\theta} = \pm a \theta_d/2 \) of the mean scaled temperature.

The Thorpe scale, \(L_T \), is computed by adiabatically reordering our discrete vertical profiles of density so as to render them statically stable (cf. Fig. 4 and the accompanying discussion). We do this at each \((x,y) \) in the computation domain and record the displacements needed to effect the reordering. \(L_T \) is then identified as the rms displacement within \(V_* \). Like the layer depths, the Thorpe scale increases rapidly during the initial growth phase [Fig. 8(a)]. Unlike the layer depths, however, \(L_T \) then decreases and approaches zero as the turbulence decays. In Fig. 8(b), we show \(L_T \) as a function of a nonlinear time scale based on the evolving large eddy turnover time, \(S^{-1} ; \tau_S = \int_0^L S(t') dt' \). \(L_T \) reaches its maximum near \(\tau_3 = 25 \). Subsequent evolution tends to approximate exponential decay with nondimensional \(e \)-folding time near 15. This \(e \)-folding time may be approximated in dimensional terms as \(15S^{-1} \), or as 1.3 times the buoyancy period, \(2\pi N^{-1} \) (assuming \(N^2/2S^2 \approx 1/4 \)). Exponential decay continues until \(\tau_3 \approx 60-80 \), after which the decay becomes more rapid. Beyond this point, \(L_T \) is generally not much larger than the vertical grid spacing \(\Delta z \), and the computation is suspect as a result.

A related measure of the length scale of density disturbances is the three-dimensional version of the Thorpe scale, \(L_{T3} \), which is computed as above except that the scalar field \(\theta(x,y,z) \) is reordered all at once rather than in columns. The fluid parcel located at \((x,y,z) \) moves to the height \(z^* \) when the fluid is thus reordered, \(L_{T3} \) is the rms average of \(z^* - z \) over \(V_* \). \(L_T \) is a measure of overturning only, whereas \(L_{T3} \) is a measure of scalar displacements in general. For example, in a nonoverturning wave field, \(L_T = 0 \) whereas \(L_{T3} \neq 0 \). \(L_{T3} \) follows a pattern of growth and subsequent decay very similar to that exhibited by \(L_T \) [Fig. 9(a)]. Closer comparison shows that \(L_T \) and \(L_{T3} \) are close in value when large, but that \(L_{T3} \) exceeds \(L_T \) quite significantly when \(L_T \) is

FIG. 7. Integral scale depths of the shear layer (a) and the stratified layer (b), scaled by \(L_{\infty} = u_0/L_{\infty} \). Symbols are as defined in Table I.

FIG. 8. Evolution of the standard Thorpe scale, \(L_T \), averaged over the stratified layer \(V_* \). Symbols are as defined in Table I. In (a), time is scaled as before using the initial maximum shear \(S_0 \). In (b), dimensional time is replaced by the nonlinear time scale \(\tau_S = \int_0^L S(t') dt' \). The straight line indicates exponential decay with nondimensional \(e \)-folding time 15.
The small values of L_T occur at the beginning and end of each simulation, during which times there is little or no overturning, but there are significant wave-like disturbances whose presence is manifest in the value of L_{T3}. A third measure of scalar displacements is the maximum value of the Thorpe displacement within V_s, denoted L_T^{max}. When the displacement field is dominated by a single large overturn, the ratio $L_T^{\text{max}}/L_T^{\text{rms}}$ attains values approximately twice the scale thickness of the turbulent layer before decreasing gradually to zero. The ratio L_T^{max}/L_T is generally between $\sqrt{2}$ and 6 when large overturns are present [Fig. 9(d)]. As the turbulence decays, the ratio becomes larger than 6, indicating the presence of isolated overturns in a field of otherwise stable stratification.

We conclude this section with a look at the buoyancy scale, defined by

$$L_b = \frac{w_{\text{rms}}}{N}.$$

Here, the numerator is the root-mean-square vertical velocity; the denominator is the bulk buoyancy frequency defined in (21). L_b is an approximation to the distance a representative fluid parcel could be displaced against gravity if all of the kinetic energy contained in its vertical motion were converted to potential energy. Over most of the range of values, L_b and L_T are closely proportional [Fig. 10(b)]. However, the ratio L_b/L_T tends to be significantly smaller than the value of unity estimated from observational data. The decrease of L_b as turbulence decays is limited by the effects of wave motions.

C. Length scales governed by dissipation, buoyancy, and shear

A quantity of central importance in our understanding of turbulence is the kinetic energy dissipation rate, ϵ

$$\epsilon = 2 \nu s_{ij} s_{ij},$$

in which

$$s_{ij} = \frac{1}{2} \left(\frac{\partial u'_i}{\partial x_j} + \frac{\partial u'_j}{\partial x_i} \right).$$

is the strain tensor. In the foregoing, primes indicate fluctuations about the horizontal average, and the overbar denotes the volume average over V_s. Background stratification and shear share the property that their effects on turbulent eddies are felt mainly at large scales. On sufficiently small scales, motions are expected to be independent of these influences, and the definition of "sufficiently small" depends on ϵ. An estimate of the small-
Saddoughi and Veeravalli74 were able to detect anisotropy on inertial subrange. In large-scale wind tunnel experiments, mean shear may be estimated as between S, equivalent to e, but deformation by buoyancy is not. That condition is assigned a value to the ratio r_C.

However, the maximum values of L is the Ozmidov scale, L_0 is the Ozmidov scale, $L_0 = \sqrt{\epsilon/N}$. These length scales are normally only employed in the context of order-of-magnitude arguments, in which case precise values are unimportant. Here, however, we will find it useful to compare relative magnitudes, so we will need to assign a value to the ratio r_C / r_O. We do so based on the following considerations. If $r_C L_C < r_O L_O$, there exists a range of scales in which deformation by the mean shear is felt, but deformation by buoyancy is not. That condition is equivalent to

$$\text{Ri} < (r_C / r_O)^{-4/3}. \quad (26)$$

This is suggestive of a Richardson number criterion for shear-driven fluctuation growth in the presence of stable stratification. Miles36 showed that the critical Ri for normal mode instability is 1/4. Simulations of turbulence in uniform shear and stratification26 have revealed that turbulence is maintained when Ri is less than about 1/4 (depending on the Reynolds number). In the present simulations (as well as in laboratory experiments31,32), turbulence decays as Ri increases beyond 1/4, and is extinguished for Ri\approx1/3. Adopting the latter value for the critical Richardson number, we obtain $r_C / r_O = 3^{3/4} \approx 2.3$. Thus, when the small-scale limits of shear and stratification influences are the same, we expect that L_C will be smaller than L_O by approximately a factor of 2.

Like the overturning scales, L_O and L_C increase rapidly in the early stages of the simulations, then decay (Fig. 11). However, the maximum values of L_O and L_C are attained between $S_0 t = 70$ and 130, significantly later than the time of maximum L_T. This corresponds to the sequence of events described in Sec. III A: The state of maximum overturn size is followed by a breaking event during which turbulence is generated. When turbulence (as quantified by e) is a maximum, so is the size of the spectral region in which eddies are unaffected by the background stratification and shear. As the turbulence decays, these background influences extend to progressively smaller scales.

L_O generally exceeds L_C by about a factor of 2, suggesting that the spectral extents of shear and stratification influences are similar. An exception to this occurs in the earliest phase of the simulation, where L_C / L_O is very small. In this phase, KH instability is growing in the spectral range where strong Reynolds stresses due to shear deformation of eddies draw energy from the background shear rapidly enough to overwhelm the damping influence of buoyancy. The foregoing observations suggest an interesting alternative interpretation of the Richardson number criterion for turbulence generation: $\text{Ri} < \text{Ri}_{cr}$ is a necessary condition for the existence of a spectral range in which motions are affected by background shear but not by stratification.

Except at late times when turbulence has decayed, L_O and L_C both tend to be considerably smaller than the overturning scale L_T (cf. Fig. 8). This shows that the largest eddies feel buoyancy and shear effects from the outset, i.e., the onset of buoyancy control occurs at $t = 0$. The second major transition in flow physics, the BIV transition, is expected to occur when the effects of background stratification and shear first reach the dissipation subrange, the large-scale limit of which is found near $10 L_K$, where $L_K = (v^2/\epsilon)^{1/4}$ is the Kolmogorov scale. This transition will be discussed in sections III D and IV.

D. Summary of length scale evolution

We look now at evolving length scale relationships in two representative simulations. These relationships are illustrated in Fig. 12, which is patterned after the diagrams used to diagnose flow transitions in grid-generated turbulence.8 Figure 12(a) shows a strongly turbulent case. Throughout the simulation, the Thorpe scale is larger than the Ozmidov scale, indicating that the large eddies are being damped by buoyancy. During the regime of strong turbulence, L_O exceeds $10 L_K$ by up to a factor of 5. This indicates a small, but significant range of scales in which inertial accelerations dominate over both buoyancy and viscosity. The BIV transition, at which point $L_O = 10 L_K$, occurs later in the simulation, near $S_0 t = 230$. The equivalent scale above which eddies are deformed by the background shear, which we have argued is about twice L_C, enters the dissipation range at about the same time. Another interesting feature appears near $S_0 t = 230$: A large increase in L_T indicates the presence of a secondary overturn in the well-mixed region. While this overturn has significant amplitude, it carries very little potential energy and thus has little effect on subsequent mixing (see the further discussion in Sec IV). Shortly after this point, L_T decreases until it enters the dissipation subrange. Near this point, decay of the three-dimensional displacement
In this section, we describe the flow structure resulting from breaking KH billows in terms of five independent dimensionless quantities, the buoyancy Reynolds number, the shear Reynolds number, the microscale Reynolds number, the Cox number, and the length scale ratio, $R_b = L_O/L_T$. We will then explore relationships among these quantities, and use these relationships to characterize the different phases of turbulence evolution.

The ratio of the Ozmidov scale to the Kolmogorov scale indicates the range of length scales over which motions are free of both the buoyancy force that damps the larger scales and the viscous dissipation that affects the small scales. The buoyancy Reynolds number is the four-thirds power of that ratio:

$$R_b = \left(\frac{L_O}{L_K} \right)^{4/3} = \frac{\bar{e}}{\nu N^2}.$$ \hspace{1cm} (27)

This quantity has been used extensively in studies of stratified turbulence. Various investigators have proposed that active turbulence is present only when R_b exceeds a certain critical value, which is approximately 20. In the present simulations, R_b achieves a maximum value as the transition to turbulence is completed, then decays. Maximum values for the different runs range between $O(10^4)$ and $O(10^5)$ (Fig. 13). This maximum quantifies the main limitation of DNS technology in the study of stratified turbulence: Buoyancy Reynolds numbers found in geophysically relevant flows range from values similar to those attained here to values several orders of magnitude larger. Thus, present day computers are able to reproduce only the low-R_b end of...
surprising, since the ratio R_s/R_b is just the bulk Richardson number, whose value remains within a relatively small range.

The microscale Reynolds number is defined using the squared turbulent velocity $q^2 = u^2 + v^2 + w^2$ and the Taylor microscale, $\lambda = \sqrt{5\nu^2 \overline{\varepsilon}}$, viz.

$$R_s = \frac{q\lambda}{\nu}. \tag{29}$$

In the present simulations, R_s attains maximum values between $O(10^5)$ and $O(10^6)$ early in the flow evolution, before the transition to turbulence [Fig. 14(c)]. This is because the perturbation kinetic energy $\frac{1}{2}q^2$ represents only weakly dissipative, nonstationary wave motions during this regime. After transition, R_s decreases from $O(10^5)$, a value comparable to those attained in contemporary DNS of stationary, isotropic turbulence.\(^{58}\)

In a state of production-dissipation balance, it may be shown\(^{73}\) that R_s is related to the shear Reynolds number by

$$R_s = \frac{\sqrt{5} R_s}{b_{13}(1 - R_f)}, \tag{30}$$

in which b_{13} is minus the ratio of the turbulent momentum flux $u'w'$ to q^2 and R_f is the flux Richardson number. With the common approximations $b_{13} = 0.10$ and $R_f = 0.2$, we obtain $R_s \approx 28\sqrt{R_f}$. Early in the KH life cycle, R_s exceeds this estimate by more than an order of magnitude [Fig. 14(d)], due mainly to the fact that the disturbance is dominated by wave motions and is far from a state of production-dissipation balance. During the decay phase, however, R_s remains close to $28\sqrt{R_f}$.

A fourth nondimensional quantity that is used commonly to characterize stratified turbulence is the Cox number, defined here by

$$C = \frac{\| \nabla \theta' \|^2}{\theta_{0z}^2}. \tag{31}$$

Whereas R_s is proportional to the ratio of kinetic energy dissipation by the disturbance to that accomplished by the mean flow, C is the ratio of the rate of scalar variance dissipation, χ, generated by the disturbance to that generated by the mean flow. The Cox number attains a maximum just as the transition to turbulence is completed, i.e., slightly earlier than the maxima of R_b and R_s, then decays [Fig. 14(e)]. In stationary, homogeneous, stably stratified turbulence, it may be shown that

$$\frac{C}{R_s\Pr} = \frac{\kappa CN^2}{\overline{\varepsilon}} = \frac{R_f}{1 - R_f}, \tag{32}$$

in which R_f is the flux Richardson number.\(^{23}\) The standard estimate $R_f = 0.2^{18}$ results in $C = 0.25 R_b \Pr$. This relation is shown by the straight line in Fig. 14(f). Except during the early, preturbulent phase, this approximation describes our results accurately.

A quantity that has often been suggested as a convenient indicator of the age of a geophysical turbulent event is the length scale ratio $R_{OP} = L_O/L_T$.\(^{16,23,25,70}\) Gibson\(^{16}\) suggests

FIG. 14. Alternative measures of the range of active length scales (left column) and relationships among them (right column). In the left column [(a), (c), and (e)], the ordinate is time, and symbols denote different simulations as in previous figures [see Table I]. In the right column [(b), (d), and (f)], different ordinates are employed, and time evolution is instead indicated by the shading of the symbols [cf. grayscale above (a)]. The top row shows the shear Reynolds number vs time (a) and vs buoyancy Reynolds number (b). The middle row shows the microscale Reynolds number vs time (c) and vs buoyancy Reynolds number (d). The bottom row shows the Cox number vs time (e) and $R_s\Pr$ (f).
that, for turbulent events in the ocean, R_{OT} decreases in time from values ≈1 to values <1. While this scenario has been observed in laboratory experiments on grid-generated turbulence, its validity for the case of shear instability is questionable. Wijesekera and Dillon (WD) have proposed an alternative scenario in which the time evolution of R_{OT} proceeds in the opposite sense, i.e., from small to large. This lack of consensus on the evolution of R_{OT} is a major obstacle to the interpretation of geophysical turbulence measurements.

WD organized a large number of observations of turbulent patches from the ocean thermocline into five classes, from small to large R_{OT}, and showed that the Shannon entropy is larger for the events with larger R_{OT}. Combined with the expectation that entropy increases with time, this result suggests that the latter possibility described above, i.e., that R_{OT} should increase with time, is the correct one. Here, we find a similar result in a more explicit form; the general pattern in all simulations is for R_{OT} to increase with time [Fig. 15(a)]. In all of our simulations, the tendency is for flows to fall into WD’s class 1 ($R_{OT}<0.125$) during the initial rollup and pairing phases. The transition to turbulence is accompanied by a rapid increase in R_{OT} to values in the upper range of WD’s class 2 (near $S_0t=60-90$). From $S_0t=90$ to $S_0t=210$, R_{OT} increases slowly into the lower range of WD’s class 3 ($0.5< R_{OT}<2$). Beyond this point, the scatter between different simulations increases considerably, but the overall tendency is for R_{OT} to increase through class 3 and often into class 4 ($2< R_{OT}<8$). Part of this scatter may be due to the fact that both L_O and L_T become very small during the late phases of the simulations, so that their ratio is difficult to compute accurately. Also, values of L_T comparable to the grid spacing are susceptible to contamination by numerical noise. Interestingly, the evolution of R_{OT} illustrated in Fig. 15(a) appears to be independent of the Prandtl number.

An interesting anomaly occurred in simulation R15P1 [circled crosses on Fig. 15(a)]; near $S_0t=190$, the evolution of R_{OT} exhibited a dramatic reversal which lasted until approximately $S_0t=240$. This reversal corresponded to the occurrence of a new KH instability within the well-mixed region at the center of the vertical domain. This secondary overturning event was made possible by the tendency for density to mix more thoroughly than velocity in the center of the turbulent layer, so that the gradient Richardson number is locally small. Although its Thorpe displacement is significant, it contains very little potential energy, since its surroundings are nearly homogeneous.

V. CONCLUSIONS

For a wide range of initial conditions, the bulk Richardson number Ri evolves toward an approximately universal value which is slightly in excess of 1/4. (This value depends somewhat on the convention used to define Ri. If maximum gradients of velocity and density are used, the final value is near 0.32, as has been found previously in laboratory experiments. If average gradients are used, the value is closer to 0.45.) This behavior suggests a length scale, $L_{uc} = u_c^2/4g \theta_0$, which encompasses much of the dependence of the evolutionary patterns of the various length scales on the initial conditions.

Both the one-dimensional Thorpe scale, L_T, and its three-dimensional counterpart, L_{T3}, increase to maxima as the transition to turbulence begins, then decrease to near zero as the turbulence decays. When the flow is dominated by turbulent overturns, L_T and L_{T3} are nearly equal. Once the overturns have subsided, however, values of L_{T3} exceeding those of L_T reflect the continued presence of stable wave motions.

The interaction of shear and stratification in a vertically localized layer is fundamentally different from that found in the case of uniform background gradients. The source of the difference is that the bulk Richardson number is constant in the case of uniform gradients, but increases in time in the case of the localized layer. In each case, a critical value of the bulk Richardson number, $Ri_{cr}=1/4$, divides the parameter space into two distinct regimes. In each case, $Ri>Ri_{cr}$ leads to the decay of any turbulence initially present. When $Ri<Ri_{cr}$ in the uniform gradient case, turbulence evolves much as in the unstratified case: The infinite supply of kinetic energy in the background shear allows buoyancy effects to be confined to the largest scales, and turbulence grows without limit. When $Ri<Ri_{cr}$ in the localized case, turbulence grows initially as in the unstratified case. Ri increases in time, though, and eventually exceeds Ri_{cr}. Beyond this point, the stratification (however small initially) overwhelms the shear and causes the turbulence to decay much as in the case of pure stratification.

The onset of buoyancy control is not a useful concept for understanding shear layer evolution, since the largest scales of motion are controlled by buoyancy from the outset. The BIV transition, however, does occur as Ri_{cr} drops below a critical value near 25 and large-scale influences are felt in the dissipation range. In terms of length scale evolution, we have seen no qualitative change in turbulence structure as the BIV transition is crossed.

We have seen that, in the present model of turbulence resulting from shear instability, the length scale ratio $R_{OT} = L_{O}/L_{T}$ is small when the flow is dominated by large, non-dissipative overturns and large in regimes where overturning has been damped. The former states tend to occur early in the flow evolution (i.e., they correspond to WD’s “natal” turbu-
lence). R_{OT} may also be small during secondary overturning events. The latter occur late in our simulations, but are physically similar to the overturns that occur near $t=0$. In summary, these results suggest, within the limitations of the present mathematical model of geophysical turbulence, that "young" turbulent events may be identified by values of R_{OT} less than unity, mature events by values greater than unity.

ACKNOWLEDGMENTS

This research was funded by the National Science Foundation under Grant No. OCE9521359. Computations were performed on the Connection Machine CM5 facility at Oregon State University's Environmental Computing Center.

Downloaded 16 Sep 2003 to 128.193.4.75. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp