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Introduction

This article describes Suid turbulence with applica-
tion to the Earth’s oceans. We begin with the
simple, classical picture of stationary, homogeneous,
isotropic turbulence. We then discuss departures
from this idealized state that occur in small-scale
geophysical Sows. The discussion closes with a tour
of some of the many physical regimes in which
ocean turbulence has been observed.

Turbulent Sow has been a source of fascination
for centuries. The term ‘turbulence’ appears to have
been used Rrst in reference to Suid Sows by da
Vinci, who studied the phenomenon extensively. To-
day, turbulence is frequently characterized as the
last great unsolved problem of classical physics. It
plays a central role in both engineering and geo-
physical Suid Sows. Its study led to the discovery of
the Rrst strange attractor by Lorenz in 1963, and
thus to the modern science of chaotic dynamics. In
the past few decades, tremendous insight into the
physics of turbulence has been gained through the-
oretical and laboratory study, geophysical observa-
tions, improved experimental techniques, and
computer simulations.

Turbulence results from the nonlinear nature of
advection, which enables interaction between
motions on different spatial scales. Consequently, an
initial disturbance with a given characteristic length
scale tends to spread to progressively larger and
smaller scales. This expansion of the spectral range
is limited at large scales by boundaries and/or body
forces, and at small scales by viscosity. If the range
of scales becomes sufRciently large, the Sow takes
a highly complex form whose details defy predic-
tion.

The roles played by turbulence in the atmosphere
and oceans can be classiRed into two categories:
momentum transport and scalar mixing. In trans-
porting momentum, turbulent motions behave in
a manner roughly analogous to molecular viscosity,
reducing differences in velocity between different
regions of a Sow. For example, winds transfer mo-

mentum to the Earth via strong turbulence in the
planetary boundary layer (a kilometer-thick layer
adjacent to the ground) and are thus decelerated.

Scalar mixing refers to the homogenization of
Suid properties such as temperature by random mo-
lecular motions. Molecular mixing rates are propor-
tional to spatial gradients, which are greatly
ampliRed due to the stretching and kneading (i.e.
stirring) of Suid parcels by turbulence. This process
is illustrated in Figure 1, which shows the evolution
of an initially circular region of dyed Suid in a nu-
merical simulation. Under the action of molecular
mixing (or diffusion) alone, an annular region of
intermediate shade gradually expands as the dyed
Suid mixes with the surrounding Suid. If the Sow is
turbulent, the result is dramatically different. The
circle is distended into a highly complex shape, and
the region of mixed Suid expands rapidly.

The Mechanics of Turbulence

Figure 2 illustrates the main physical mechanisms
that drive turbulence at the smallest scales. The
description is presented in terms of strain and vor-
ticity, quantities that represent the tendency of the
Sow at any point to deform and to rotate Suid
parcels, respectively. A major and recent insight is
that vorticity and strain are not distributed random-
ly in turbulent Sow, but rather are concentrated into
coherent regions, each of which is dominated by one
type of motion or the other. The Rrst mechanism we
consider is vortex rollup due to shear instability.
This process results in a vorticity concentration of
dimension close to unity, i.e. a line vortex. Line
vortices are reinforced by the process of vortex
stretching. When a vortex is stretched by the sur-
rounding Sow, its rotation rate increases to conserve
angular momentum. Opposing these processes is
molecular viscosity, which both dissipates vorticity
and Suxes it away from strongly rotational regions.

Turbulence may thus be visualized as a loosely
tangled ‘spaghetti’ of line vortices, which continu-
ously advect each other in complex ways (Figure 3).
At any given time, some vortices are being created
via rollup, some are growing due to vortex stretch-
ing, and some are decaying due to viscosity. Many,
however, are in a state of approximate equilibrium
among these processes, so that they appear as long-
lived, coherent features of the Sow. Mixing is not
accomplished within the vortices themselves; in fact,
these regions are relatively stable, like the eye of

0001

0002

0003

0004

0005

0006

0007

3D TURBULENCE 1

VVCrNPrBinnirscanrPadmarRWOS 134



a hurricane. Instead, mixing occurs mainly in re-
gions of intense strain that exist between any two
nearby vortices that rotate in the same sense (Figure
2). It is in these regions that Suid parcels are de-
formed to produce ampliRed gradients and conse-
quent rapid mixing.

Stationary, Homogeneous, Isotropic
Turbulence

Although the essential structures of turbulence are
not complex (Figure 2), they combine in a bewilder-
ing range of sizes and orientations that deRes analy-
sis (Figure 3). Because of this, turbulence is most
usefully understood in statistical terms. Although
the statistical approach precludes detailed prediction
of Sow evolution, it does give access to the rates of
mixing and property transport, which are of pri-
mary importance in most applications. Statistical
analyses focus on the various moments of the Sow
Reld, deRned with respect to some averaging opera-
tion. The average may be taken over space and/or
time, or it may be an ensemble average taken over
many Sows begun with similar initial conditions.

Analyses are often simpliRed using three standard
assumptions. The Sow statistics are assumed to be

f stationary (invariant with respect to translations
in time),

f homogeneous (invariant with respect to transla-
tions in space), and/or

f isotropic (invariant with respect to rotations).

Much of our present understanding pertains to
this highly idealized case. Our description will focus
on the power spectra that describe spatial variability
of kinetic energy and scalar variance. The spectra
provide insight into the physical processes that gov-
ern motion and mixing at different spatial scales.

Velocity Fields

Big whorls have little whorls
That feed on their velocity
And little whorls have lesser whorls
And so on to viscosity

L.F. Richardson (1922)

Suppose that turbulence is generated by a steady,
homogeneous, isotropic stirring force whose spatial
variability is described by the Fourier wavenumber
kF. Suppose further that the turbulence is allowed to
evolve until equilibrium is reached between forcing
and viscous dissipation, i.e., the turbulence is statist-
ically stationary.

Figure 4 shows typical wavenumber spectra of
kinetic energy, E(k), and kinetic energy dissipation,
D(k), for such a Sow. E(k)dk is the kinetic energy
contained in motions whose wavenumber magni-
tudes lie in an interval of width dk surrounding k.
D(k)dk"lk2E(k)dk is the rate at which that kinetic
energy is dissipated by molecular viscosity (l) in that
wavenumber band. The net rate of energy dissipa-
tion is given by e":=0 D(k)dk, and is equal (in the
equilibrium state) to the rate at which energy is
supplied by the stirring force.

Nonlinear interactions induce a spectral Sux, or
cascade, of energy. The energy cascade is directed
primarily (though not entirely) toward smaller
scales, i.e., large-scale motions interact to create
smaller-scale motions. The resulting small eddies
involve sharp velocity gradients, and are therefore
susceptible to viscous dissipation. Thus, although
kinetic energy resides mostly in large-scale motions,
it is dissipated primarily by small-scale motions.
(Note that the logarithmic axes used in Figure
4 tend to de-emphasize the peaks in the energy and
dissipation rate spectra). Turbulence can be en-
visioned as a ‘pipeline’ conducting kinetic energy
through wavenumber space: in at the large scales,
down the spectrum, and out again at the small
scales, all at a rate e. The cascade concept was Rrst
suggested early in the twentieth century by L.F.
Richardson, who immortalized his idea in the verse
quoted at the beginning of this section.

The energy spectrum is often divided conceptually
into three sections. The energy-containing subrange
encompasses the largest scales of motion, whereas
the dissipation subrange includes the smallest scales.
If the range of scales is large enough, there may
exist an intermediate range in which the form of the
spectrum is independent of both large-scale forcing
and small-scale viscous effects. This intermediate
range is called the inertial subrange. The existence
of the inertial subrange depends on the value of the
Reynolds number: Re"ul/l, where u and l are
scales of velocity and length characterizing the en-
ergy-containing range. The spectral distance be-
tween the energy-containing subrange and the
dissipation subrange, kF/kK, is proportional to R3@4e .
A true inertial subrange exists only in the limit of
large Re.

In the 1940 s, the Russian statistician A.N. Kol-
mogorov hypothesized that, in the limit RePR,
the distribution of eddy sizes in the inertial and
dissipation ranges should depend on only two para-
meters (besides wavenumber): the dissipation rate
e and the viscosity l, i.e., E"E(k; e, l). Dimensional
reasoning then implies that E"e1@4l5@4f(k/kK), where
kK"(e/l3)1@4 is the Kolmogorov wavenumber and
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f is some universal function. Thus, with the assump-
tions of stationarity, homogeneity, isotropy, and in-
Rnite Reynolds number, all types of turbulence,
from Sow over a wing to convection in the interior
of the sun, appear as manifestations of a single
process whose form depends only on the viscosity of
the Suid and the rate at which energy is transferred
through the ‘pipeline’. This tremendous simpliRca-
tion is generally regarded as the beginning of the
modern era of turbulence theory.

Kolmogorov went on to suggest that the spectrum
in the inertial range should be simpler still by virtue
of being independent of viscosity. In that case
E"E(k, e), and the function can be predicted from
dimensional reasoning alone up to the universal
constant CK, namely, E"CKe2@3k~5@3. This power-
law spectral form indicates that motions in the iner-
tial subrange are self-similar, i.e., their geometry is
invariant under coordinate dilations.

Early efforts to identify the inertial subrange in
laboratory Sows were inconclusive because the
Reynolds number could not be made large enough.
(In a typical, laboratory-scale water channel,
u&0.1 m s~1, l&0.1 m, and l&10~6 m2 s~1, giv-
ing Re&104. In a typical wind tunnel, u&1 m s~1,
l&1 m, and l&10~5 m2 s~1, so that Re&105.)
The inertial subrange spectrum was Rrst veriRed in
1962 using measurements in a strongly turbulent
tidal channel near Vancouver Island, where typical
turbulent velocity scales u&1 m s~1 and length
scales l&100 m combine with the kinematic viscos-
ity of seawater l&10~6 m2 s~1 to produce
a Reynolds number Re&108. From this experiment
and others like it, the value of CK has been deter-
mined to be near 1.6.

Passive Scalars and Mixing

Now let us suppose that the Suid possesses some
scalar property h, such as temperature or the con-
centration of some chemical species, and that the
scalar is dynamically passive, i.e., its presence does
not affect the Sow. In the case of temperature, this
is true only for sufRciently small-scale Suctuations;
see Buoyancy Effects for details. Suppose also that
there is a source of large-scale variations in h, e.g.,
an ambient temperature gradient in the ocean.
Isosurfaces of h will be folded and kneaded by the
turbulence so that their surface area tends to in-
crease. As a result, typical gradients of h will also
increase, and will become susceptible to erosion by
molecular diffusion. Scalar variance is destroyed at
a rate s, which is equal (in equilibrium) to the rate
at which variance is produced by the large eddies.

Thus, the turbulent mixing of the scalar proceeds
in a manner similar to the energy cascade discussed
above. However, there is an important difference in
the two phenomena. Unlike energy, scalar variance
is driven to small scales by a combination of two
processes. First, scalar gradients are compressed by
the strain Relds between the turbulent eddies. Sec-
ond, the eddies themselves are continually redis-
tributed toward smaller scales. (The latter process is
just the energy cascade described in the previous
section.)

Figure 5 shows the equilibrium scalar variance
spectrum for the case of heat mixing in water. Most
of the variance is contained in the large scales,
which are separated from the small scales by an
inertial-convective subrange (so-called because tem-
perature variance is convected by motions in the
inertial subrange of the energy spectrum). Here, the
spectrum depends only on e and s; its form is
Eh"bse~1@3k~5@3, where b is a universal constant.

The shape of the spectrum at small scales is very
different from that of the energy spectrum, owing to
the fact that, in sea water, the molecular diffusivity,
i, of heat is smaller than the kinematic viscosity.
The ratio of viscosity to thermal diffusivity is
termed the Prandtl number (i.e. Pr"l/i) and has
a value near 7 for sea water. In the viscous-convec-
tive subrange, the downscale cascade of temperature
variance is slowed because the eddies driving the
cascade are weakened by viscosity. In other words,
the Rrst of the two processes listed above as driving
the scalar variance cascade is no longer active.
There is no corresponding weakening of temper-
ature gradients, because molecular diffusivity is not
active on these scales. As a result, there is a tend-
ency for variance to ‘accumulate’ in this region of
the spectrum and the spectral slope is reduced from
!5/3 to !1. However, the variance in this range
is ultimately driven into the viscous-diffusive sub-
range, where it is Rnally dissipated by molecular
diffusion. A measure of the wavenumber at which
scalar variance is dissipated is the Batchelor
wavenumber, kB"(e/li2)1@4. When Pr'1, as for
sea water, the Batchelor wavenumber is larger than
the Kolmogorov wavenumber, i.e., temperature Suc-
tuations can exist at smaller scales than velocity
Suctuations.

In summary, the energy and temperature spectra
exhibit many similarities. Energy (temperature vari-
ance) is input at large scales, cascaded down the
spectrum by inertial (convective) processes, and
Rnally dissipated by molecular viscosity (diffusion).
The main difference between the two spectra is the
viscous-convective range of the temperature spec-
trum, in which molecular smoothing acts on the
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velocity Reld but not on the temperature Reld. This
difference is even more pronounced if the scalar
Reld represents salinity rather than temperature, for
salinity is diffused even more weakly than heat. The
ratio of the molecular diffusivities of heat and salt is
of order 102, so that the smallest scales of salinity
Suctuation in sea water are ten times smaller than
those of temperature Suctuations.

Turbulence in Geophysical Flows

The assumptions of homogeneity, stationarity and
isotropy as employed by Kolmogorov have permit-
ted tremendous advances in our understanding of
turbulence. In addition, approximations based on
these assumptions are used routinely in all areas of
turbulence research. However, we must ultimately
confront the fact that physical Sows rarely conform
to our simplifying assumptions. In geophysical tur-
bulence, symmetries are upset by a complex inter-
play of effects. Here, we focus on three important
classes of phenomena that modify small-scale turbu-
lence in the ocean: shear, stratiRcation, and bound-
ary proximity.

Shear Effects

Geophysical turbulence often occurs in the presence
of a current which varies on scales much larger than
the energy-containing scales of the turbulence, and
evolves much more slowly than the turbulence.
Examples include atmospheric jet streams and
large-scale ocean currents such as the Gulf Stream
and the Equatorial Undercurrent. In such cases, it
makes sense to think of the background current as
an entity separate from the turbulent component of
the Sow.

Shear upsets homogeneity and isotropy by de-
forming turbulent eddies. By virtue of the resulting
anisotropy, turbulent eddies exchange energy with
the background shear through the mechanism of
Reynolds stresses. Reynolds stresses represent cor-
relations between velocity components parallel to
and perpendicular to the background Sow, correla-
tions that would vanish if the turbulence were iso-
tropic. Physically, they represent transport of
momentum by the turbulence. If the transport is
directed counter to the shear, kinetic energy is trans-
ferred from the background Sow to the turbulence.
This energy transfer is one of the most common
generation mechanisms for geophysical turbulence.

In sheared turbulence, the background shear acts
primarily on the largest eddies. Motions on scales
much smaller than the Corrsin scale,
LC"(e/S3)(where S"dU/dz, the vertical gradient

of the ambient horizontal current) are largely unaf-
fected.

Buoyancy Effects

Most geophysical Sows are affected to some degree
by buoyancy forces, which arise due to spatial vari-
ations in density. Buoyancy breaks the symmetry of
the Sow by favoring the direction in which the
gravitational force acts. Buoyancy effects can either
force or damp turbulence. Forcing occurs in the case
of unstable density stratiRcation, i.e., when heavy
Suid overlies light Suid. This happens in the atmo-
sphere on warm days, when the air is heated from
below. The resulting turbulence is often made vis-
ible by cumulus clouds. In the ocean, surface cool-
ing (at night) has a similar effect. Unstable
stratiRcation in the ocean can also result from evap-
oration, which increases surface salinity and hence
surface density. In each of these cases, unstable
stratiRcation results in convective turbulence, which
can be extremely vigorous. Convective turbulence
usually restores the Suid to a stable state soon after
the destabilizing Sux ceases (e.g., when the sun rises
over the ocean).

Buoyancy effects tend to damp turbulence in the
case of stable stratiRcation, i.e., when light Suid
overlies heavier Suid. In stable stratiRcation, a Suid
parcel displaced from equilibrium oscillates verti-
cally with frequency N"(!g o~1do/dz), the buoy-
ancy or Brunt+Vaisala frequency (g represents
acceleration due to gravity and o(z) is the ambient
mass density). A result of stable stratiRcation that
can dramatically alter the physics of turbulence is
the presence of internal gravity waves (IGW). These
are similar to the more familiar interfacial waves
that occur at the surfaces of oceans and lakes, but
continuous density variation adds the possibility of
vertical propagation. Visible manifestations of IGW
include banded clouds in the atmosphere and slicks
on the ocean surface. IGW carry momentum, but no
scalar Sux and no vorticity.

In strongly stable stratiRcation, motions may be
visualized approximately as two-dimensional turbu-
lence (Figure 1) Sowing on nearly horizontal surfa-
ces that undulate with the passage of IGW. The
quasi-two-dimensional mode of motion carries all of
the vorticity of the Sow (since IGW carry none), and
is therefore called the vortical mode.

In moderately stable stratiRcation, three-dimen-
sional turbulence is possible, but its structure is
modiRed by the buoyancy force, particularly at large
scales. Besides producing anisotropy, the sup-
pression of vertical motion damps the transfer of
energy from any background shear, thus reducing
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the intensity of turbulence. On scales much smaller
than the Ozmidov scale, L0"(e/N3), buoyancy has
only a minor effect. In Passive scalars and mixing
above, we used temperature as an example of a dy-
namically passive quantity. This approximation is
valid only on scales smaller than the Ozmidov scale.
The relative importance of stratiRcation and shear
depends on the magnitudes of S and N. If S<N,
shear dominates and turbulence is ampliRed. On the
other hand, if S;N, the buoyancy forces dominate
and turbulence is suppressed.

The relationship between IGW and turbulence in
stratiRed Sow is exceedingly complex. At scales in
excess of a few meters (Figure 6), ocean current
Suctuations behave like IGW, displaying the charac-
teristic spectral slope k~1. At scales smaller than the
Ozmidov scale (typically a few tens of centimeters),
Suctuations differ little from the classical picture of
homogeneous, isotropic turbulence. The intermedi-
ate regime is a murky mix of nonlinear IGW and
anisotropic turbulence that is not well understood at
present.

The breaking of IGW is thought to be the major
source of turbulence in the ocean interior. Breaking
occurs when a superposition of IGW generates lo-
cally strong shear and/or weak stratiRcation. IGW
propagating obliquely in a background shear may
break on encountering a critical level, a depth at
which the background Sow speed equals the hori-
zontal component of the wave’s phase velocity.
Many dramatic phenomena occur where wave speed
matches Sow speed. Other examples include the
hydraulic jump and the sonic boom. Just as waves
may generate turbulence, turbulent motions in strat-
iRed Sow may radiate energy in the form of waves.

In stably stratiRed turbulence, the distinction be-
tween stirring and mixing of scalar properties be-
comes crucial. Stirring refers to the advection and
deformation of Suid parcels by turbulent motion,
whereas mixing involves actual changes in the scalar
properties of Suid parcels. Mixing can only be ac-
complished by molecular diffusion, though it is ac-
celerated greatly in turbulent Sow due to stirring (cf.
Figure 1 and the accompanying discussion). In
stable stratiRcation, changes in the density Reld due
to stirring are reversible, i.e., they can be undone by
gravity. In contrast, mixing is irreversible, and thus
leads to a permanent change in the properties of the
Suid. For example, consider a blob of water that has
been warmed at the ocean surface, then carried
downward by turbulent motions. If the blob is
mixed with the surrounding water, its heat will
remain in the ocean interior, whereas if the blob is
only stirred, it will eventually bob back up to the
surface and return its heat to the atmosphere.

Boundary Effects

It is becoming increasingly clear that most turbulent
mixing in the ocean takes place near boundaries,
either the solid boundary at the ocean bottom, or
the moving boundary at the surface. All boundaries
tend to suppress motions perpendicular to themsel-
ves, thus upsetting both the homogeneity and the
isotropy of the turbulence. Solid boundaries also
suppress motion in the tangential directions. There-
fore, since the velocity must change from zero at the
boundary to some nonzero value in the interior,
a shear is set up, leading to the formation of a tur-
bulent boundary layer. Turbulent boundary layers
are analogous to viscous boundary layers, and are
sites of intense, shear-driven mixing (Figure 7). In
turbulent boundary layers, the characteristic size of
the largest eddies is proportional to the distance
from the boundary.

Near the ocean surface, the Sexible nature of the
boundaries leads to a multitude of interesting phe-
nomena, notably surface gravity waves and Lan-
gmuir cells. These phenomena contribute
signiRcantly to upper-ocean mixing and thus to
air}sea Suxes of momentum, heat and various
chemical species. Boundaries also include obstacles
to the Sow, such as islands and seamounts, which
create turbulence. If Sow over an obstacle is stably
stratiRed, buoyancy-accelerated bottom Sow and
a downstream hydraulic jump may drive turbulence
(Figure 7).

Ocean turbulence is often inSuenced by combina-
tions of shear, stratiRcation, and boundary effects.
In the example shown in Figure 7, all three effects
combine to create an intensely turbulent Sow that
diverges dramatically from the classical picture of
stationary, homogeneous, isotropic turbulence.

Length Scales of Ocean Turbulence

Examples of turbulent Sow regimes that have been
observed in the ocean can be considered in terms of
typical values of e and N that pertain to each (Fig-
ure 8). This provides the information to estimate
both largest and smallest scales present in the Sow.
The largest scale is approximated by the Ozmidov
scale, which varies from a few centimeters in the
ocean’s thermocline to several hundred meters in
weakly stratiRed and/or highly energetic Sows. The
smallest scale, the Kolmogorov scale LK"k~1

K , is
typically 1 cm or less.

Turbulence in the upper ocean mixed layer may
be driven by wind and/or by convection due to
surface cooling. In the convectively mixed layer,
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N is effectively zero within the turbulent region, and
the maximum length scale is determined by the
depth of the mixed layer. In both cases the free
surface limits length scale growth.

Turbulence in the upper equatorial thermocline is
enhanced by the presence of shear associated with
the strong equatorial zonal current system. StratiR-
cation tends to be considerably stronger in the upper
thermocline than in the main thermocline. Despite
weak stratiRcation, turbulence in the main thermoc-
line tends to be relatively weak due to isolation
from strong forcing. Turbulence in this region is
generated primarily by IGW interactions.

Tidal channels are sites of extremely intense tur-
bulence, forced by interactions between strong tidal
currents and three-dimensional topography. Length
scales are limited by the geometry of the channel.
Turbulent length scales in the bottom boundary
layer are limited below by the solid boundary and
above by stratiRcation. Intense turbulence is also
found in hydraulically controlled Sows, such as have
been found in the Strait of Gibraltar, and also over
topography on the continental shelf (cf. Figure 7). In
these Sows the stratiRcation represents a potential
energy supply that drives strongly sheared down-
slope currents, the kinetic energy of which is in turn
converted into turbulence and mixing.

All of these turbulence regimes are subjects of
ongoing observational and theoretical research,
aimed at generalized Kolmogorov’s view of turbu-
lence to encompass the complexity of real geophysi-
cal Sows.

See also

Atlantic Equatorial Currents (361). Brazil and Falk-
lands (Malvinas) Currents (358). Breaking Waves
and Near-Surface Turbulence (71). Heat and Mo-
mentum Fluxes at the Sea Surface (61). Heat
Transport and Climate (264). Indian Ocean Equa-
torial Currents (367). Internal Waves (126). Islands
Walkes (140). Langmuir Circulation and Instability
(141). Mesoscale Eddies (143). Open Ocean Con-
vection (118). Paci\c Equatorial Currents (354).
Turbulence in the Benthic Boundary Layer (136).
Upper Ocean Mining Processes (156). Vertical
Modes (132).
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Figure 1 A comparison of mixing enhanced by turbulence with
mixing due to molecular processes alone, as revealed by a nu-
merical solution of the equations of motion. The initial state
includes a circular region of dyed fluid in a white background.
Two possible evolutions are shown: one in which the fluid is
motionless (save for random molecular motions), and one in
which the fluid is in a state of fully developed, two-dimensional
turbulence. The mixed region (yellow}green) expands much
more rapidly in the turbulent case.
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Figure 2 Schematic illustration of line vortices and strained
regions in turbulent flow. Fluid parcels in the vortex interiors
rotate with only weak deformation. In contrast, fluid parcels
moving between the vortices are rapidly elongated in the direc-
tion of the purple arrows and compressed in the direction of the
green arrows.

Figure 3 Computer simulation of turbulence as it is believed
to occur in the ocean thermocline. The colored meshes indicate
surfaces of constant vorticity.
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Figure 7 Flow over Stonewall bank, on the continental shelf off the Oregon coast. Colors show the kinetic energy dissipation rate,
with red indicating strong turbulence. White contours are isopycnals, showing the effect of density variations in driving the
downslope flow. Three distinct turbulence regimes are visible: (1) turbulence driven by shear at the top of the rapidly moving lower
layer, (2) a turbulent bottom boundary layer and (3) a hydraulic jump.
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Figure 4 Theoretical wavenumber spectra of kinetic energy
and kinetic energy dissipation for stationary, homogeneous, iso-
tropic turbulence forced at wavenumber kF. Approximate loca-
tions of the energy containing, inertial, and dissipation sub-
ranges are indicated, along with the Kolmogorov wavenumber
kK. Axes are logarithmic. Numerical values depend on Re and
are omitted here for clarity.
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viscous-diffusive subranges are indicated, along with the Kol-
mogorov wavenumber kK and the Batchelor wavenumber kB.
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omitted here for clarity.
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scales from ocean observations.
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Figure 8 Regimes of ocean turbulence located with respect to
stratification and energy dissipation. Dotted lines indicate Oz-
midov and Kolmogorov length scales.
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